首页> 外文OA文献 >Process consistency in models: The importance of system signatures, expert knowledge, and process complexity
【2h】

Process consistency in models: The importance of system signatures, expert knowledge, and process complexity

机译:模型中的过程一致性:系统签名,专家知识和过程复杂性的重要性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Hydrological models frequently suffer from limited predictive power despite adequate calibration performances. This can indicate insufficient representations of the underlying processes. Thus, ways are sought to increase model consistency while satisfying the contrasting priorities of increased model complexity and limited equifinality. In this study, the value of a systematic use of hydrological signatures and expert knowledge for increasing model consistency was tested. It was found that a simple conceptual model, constrained by four calibration objective functions, was able to adequately reproduce the hydrograph in the calibration period. The model, however, could not reproduce a suite of hydrological signatures, indicating a lack of model consistency. Subsequently, testing 11 models, model complexity was increased in a stepwise way and counter-balanced by “prior constraints,” inferred from expert knowledge to ensure a model which behaves well with respect to the modeler's perception of the system. We showed that, in spite of unchanged calibration performance, the most complex model setup exhibited increased performance in the independent test period and skill to better reproduce all tested signatures, indicating a better system representation. The results suggest that a model may be inadequate despite good performance with respect to multiple calibration objectives and that increasing model complexity, if counter-balanced by prior constraints, can significantly increase predictive performance of a model and its skill to reproduce hydrological signatures. The results strongly illustrate the need to balance automated model calibration with a more expert-knowledge-driven strategy of constraining models.
机译:尽管具有足够的校准性能,水文模型经常遭受有限的预测能力。这可能表示基础过程的表示不足。因此,寻求在满足增加的模型复杂性和有限的相等性的相反优先级的同时增加模型一致性的方法。在这项研究中,测试了系统使用水文特征和专家知识对增加模型一致性的价值。结果发现,受四个校准目标函数约束的简单概念模型能够在校准期间充分再现水文图。然而,该模型无法再现一套水文特征,表明缺乏模型一致性。随后,通过测试11种模型,模型的复杂性逐步提高,并通过“先验约束”来抵消,这是根据专家知识推论得出的,以确保模型在建模者对系统的感知方面表现良好。我们表明,尽管校准性能没有改变,但最复杂的模型设置在独立测试期间仍表现出更高的性能,并且具有更好地再现所有测试特征的技能,表明系统的外观更好。结果表明,尽管在多个校准目标方面表现良好,但模型仍可能不够用;如果模型的复杂性增加(如果受到先前约束的限制),则可以大大提高模型的预测性能及其再现水文特征的技能。结果强烈表明,需要在自动模型校准与更受专家知识驱动的约束模型之间取得平衡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号